Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metallomics ; 16(3)2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38425033

RESUMO

The tuberculosis (TB) emergency has been a pressing health threat for decades. With the emergence of drug-resistant TB and complications from the COVID-19 pandemic, the TB health crisis is more serious than ever. Mycobacterium tuberculosis (Mtb), the causative agent of TB, requires iron for its survival. Thus, Mtb has evolved several mechanisms to acquire iron from the host. Mtb produces two siderophores, mycobactin and carboxymycobactin, which scavenge for host iron. Mtb siderophore-dependent iron acquisition requires the export of apo-siderophores from the cytosol to the host environment and import of iron-bound siderophores. The export of Mtb apo-siderophores across the inner membrane is facilitated by two mycobacterial inner membrane proteins with their cognate periplasmic accessory proteins, designated MmpL4/MmpS4 and MmpL5/MmpS5. Notably, the Mtb MmpL4/MmpS4 and MmpL5/MmpS5 complexes have also been implicated in the efflux of anti-TB drugs. Herein, we solved the crystal structure of M. thermoresistibile MmpS5. The MmpS5 structure reveals a previously uncharacterized, biologically relevant disulfide bond that appears to be conserved across the Mycobacterium MmpS4/S5 homologs, and comparison with structural homologs suggests that MmpS5 may be dimeric.


Assuntos
Mycobacteriaceae , Mycobacterium tuberculosis , Tuberculose , Humanos , Pandemias , Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia , Sideróforos/metabolismo , Ferro/metabolismo , Dissulfetos/metabolismo , Proteínas de Bactérias/metabolismo
2.
PLoS Pathog ; 19(9): e1011650, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37747938

RESUMO

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, poses a great threat to human health. With the emergence of drug resistant Mtb strains, new therapeutics are desperately needed. As iron is critical to the growth and survival of Mtb, mechanisms through which Mtb acquires host iron represent attractive therapeutic targets. Mtb scavenges host iron via Mtb siderophore-dependent and heme iron uptake pathways. While multiple studies describe the import of heme and ferric-siderophores and the export of apo-siderophores across the inner membrane, little is known about their transport across the periplasm and cell-wall environments. Mtb FecB and FecB2 are predicted periplasmic binding proteins implicated in host iron acquisition; however, their precise roles are not well understood. This study sought to differentiate the roles FecB and FecB2 play in Mtb iron acquisition. The crystallographic structures of Mtb FecB and FecB2 were determined to 2.0 Å and 2.2 Å resolution, respectively, and show distinct ligand binding pockets. In vitro ligand binding experiments for FecB and FecB2 were performed with heme and bacterial siderophores from Mtb and other species, revealing that both FecB and FecB2 bind heme, while only FecB binds the Mtb sideophore ferric-carboxymycobactin (Fe-cMB). Subsequent structure-guided mutagenesis of FecB identified a single glutamate residue-Glu339-that significantly contributes to Fe-cMB binding. A role for FecB in the Mtb siderophore-mediated iron acquisition pathway was corroborated by Mycobacterium smegmatis and Mtb pull-down assays, which revealed interactions between FecB and members of the mycobacterial siderophore export and import machinery. Similarly, pull-down assays with FecB2 confirms its role in heme uptake revealing interactions with a potential inner membrane heme importer. Due to ligand preference and protein partners, our data suggest that Mtb FecB plays a role in siderophore-dependent iron and heme acquisition pathways; in addition, we confirm that Mtb FecB2 is involved in heme uptake.


Assuntos
Ferro , Mycobacterium tuberculosis , Humanos , Ferro/metabolismo , Sideróforos/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Ligantes , Proteínas de Bactérias/metabolismo , Heme/metabolismo
3.
Biochemistry ; 58(46): 4610-4620, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31638374

RESUMO

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, requires iron for survival. In Mtb, MhuD is the cytosolic protein that degrades imported heme. MhuD is distinct, in both sequence and structure, from canonical heme oxygenases (HOs) but homologous with IsdG-type proteins. Canonical HO is found mainly in eukaryotes, while IsdG-type proteins are predominantly found in prokaryotes, including pathogens. While there are several published structures of MhuD and other IsdG-type proteins in complex with the heme substrate, no structures of IsdG-type proteins in complex with a product have been reported, unlike the case for HOs. We recently showed that the Mtb variant MhuD-R26S produces biliverdin IXα (αBV) rather than the wild-type mycobilin isomers. Given that mycobilin and other IsdG-type protein products like staphylobilin are difficult to isolate in quantities sufficient for structure determination, here we use the MhuD-R26S variant and its product αBV as a proxy to study the IsdG-type protein-product complex. First, we show that αBV has a nanomolar affinity for MhuD and the R26S variant. Second, we determined the MhuD-R26S-αBV complex structure to 2.5 Å, which reveals two notable features: (1) two αBV molecules bound per active site and (2) a novel α-helix (α3) that was not observed in previous MhuD-heme structures. Finally, through molecular dynamics simulations, we show that α3 is stable with the proximal αBV alone. MhuD's high affinity for the product and the observed structural and electrostatic changes that accompany substrate turnover suggest that there may be an unidentified class of proteins that are responsible for the extraction of products from MhuD and other IsdG-type proteins.


Assuntos
Proteínas de Bactérias/química , Biliverdina/metabolismo , Heme/metabolismo , Oxigenases de Função Mista/química , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/metabolismo , Biliverdina/química , Cristalografia por Raios X , Heme/química , Humanos , Oxigenases de Função Mista/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Mutação Puntual , Conformação Proteica , Especificidade por Substrato , Tuberculose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...